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ABSTRACT 

This  paper  describes  three  autonomy  architectures for a 
system  that  continuously  plans  to  control  a  fleet of 
spacecraft  using  collective  mission  goals  instead  of  goals 
or command  sequences  for  each  spacecraft. A fleet of self- 
commanding  spacecraft  would  autonomously  coordinate 
itself  to  satisfy  high  level  science  and  engineering  goals  in 
a  changing  partially-understood  environment - making 
feasible  the  operation  of  tens or even  a  hundred  spacecraft 
(such  as  for  interferometer or magnetospheric  constellation 
missions). 

mu/* ecrf 
1. INTRODUCTION 

Until  the  past 5 years,  missions  typically  involved  fairly 
large  expensive  spacecraft.  Such  missions  have  primarily 
favored  using  older  proven  technologies over more 
recently  developed  ones,  and  humans  controlled  spacecraft 
by  manually  generating  detailed  command  sequences  with 
low-level  tools  and  then  transmitting the sequences  for 
subsequent  execution  on  a  spacecraft  controller. 

This  approach  toward  controlling  a  spacecraft  has worked 
spectacularly  on  previous NASA missions,  but it has 
limitations  deriving  from  communications  restrictions - 
scheduling  time  to  communicate with a particular 
spacecraft  involves  competing  with  other  projects due to 
the  limited  number  of  deep  space  network  antennae.  This 
implies  that  a  spacecraft  can  spend  a long time  just  waiting 
whenever  a  command  sequence  fails.  This  is one reason 
why  the New Millennium  program  has an objective to 
migrate  parts  of  mission  control  tasks  onboard  a  spacecraft 
to  reduce  wait  time by making  spacecraft  more  robust 
[Muscettola et al. 971. The  migrated  software  is  called  a 
“remote  agent”  and  can  be  partitioned into 4  components: 
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a  mission  manager  to  generate the high level goals, 
a  plannedscheduler to turn  goals into activities while 
reasoning  about  future  expected  situations, 
an  executive/diagnostician to initiate  and  maintain 
activities  while  interpreting  sensed  events  through 
reasoning  about  past  and  present  situations, and 

0 a  conventional  real-time  subsystem  to  interface  with  the 
spacecraft  to  implement  an  activity’s  primitive  actions. 

In addition to needing remote  planning  and  execution for 
isolated  spacecraft,  a  trend  toward  multiple-spacecraft 
missions  points  to  the  need  for  remote  distributed  planning 
and  execution.  The  past  few years have  seen  missions  with 
growing  numbers  of  probes.  Pathfinder  has  its  rover 
(Sojourner),  Cassini  has  its  lander  (Huygens),  Cluster I1 
has  4  spacecraft  for  multi-point  magnetosphere  plasma 
measurements.  This  trend  is  expected  to  continue to 
progressively  larger  fleets.  For  example,  one  proposed 
interferometer mlssion [Mettler&Milman 961 would have 
18 spacecraft flylng I n  torma11o11 I n  ol-del- I O  dc,1c.c1 vartI1- 

slzed planets orbltlng othcl- s1a1-s. Anothcl plopozctl 
mission involves 5 to 500 spacecraft III Earth orbi t  1 0  
measure  global  phenomena within the magnetosphere. 

To  describe the 4  software  components of autonomous 
spacecraft  and  constellations, the next  section  describes  a 
masterhlave  approach  toward  autonomously  controlling 
constellations.  While  being  a  conceptually  simple 
extension  to  single-spacecraft  autonomy,  this  approach  has 
several  problems  that  motivate  the  next  section  on 
teamwork.  Teamwork  replaces  masters  and  slaves  with 
leaders and followers,  where a follower  has the autonomy 
to look after its teammates. The fourth section  discusses 
ways to expand teamwork to let each spacecrati f ~ ~ n c t ~ o n  
both  as a leader and a follower, and the  last section 
concludes by discussing  hybrids of the  three  architectures. 

2. MASTEWSLAVE  COORDINATION 

The  easiest way to adapt  autonomous  spacecraft  research 
to controlling  constellations  involves  treating  the  constell- 
ation  as  a  single  spacecraft.  Here  one  spacecraft  directly 
controls  the  others  as if they were  connected.  The 
controlling  “master”  spacecraft  performs  all  autonomy 
reasoning while the slaves only transmit  sensor  values to 
the master and forward  control s~gnals rece~ved f r o m  the 
master to thelr appropriate local de\,lces ( f ~ g  1 )  I‘he 
executiveidiagnostician  starts  actions and the master’s real- 
time subsystem  controls the action  either  locally  or 
remotely  through  a  slave. 

The  3  modules  above  the  real-time  subsystem  essentially 
follow  the  standard  belief-desire-intention  (BDI) 
framework  [Rao&Georgeff 951. The mission  manager 
takes  a  set  of beliefi and  generates desires (goals)  for  the 
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FIG.: 1  Architecture  for  MasterKlave Coordination 

plannerhcheduler,  which translates them into intentions 
(plans) for execution. Gat describes 3T [Gat 971, another 
architecture with three layers to deliberate, sequence, and 
control. While deliberation combines mission 
management and planning, the other two layers match the 
executive and the real-time subsystem. EVAR [Schoppers 
951 illustrates another case where the executive subsumes 
both  the  planner and mission  manager. In general, we can 
describe  most  autonomous agent research  as variants on 
the BDI model  with different approaches toward 
implementing the modules and their interactions. 

2.1. EXECUTIVE/DIAGNOSTICIAN 

At the lowest level the executiveidiagnostician (or just 
“executive”) takes an activity sequence, incrementally 
feeds actlvltles to the real-time subsystem and monitors 
results to update the system‘s statc ~ a model of  the 
constellatlon and Its envlronment. Smce performing an 
activity might have unintended situation dependant results, 
blindly feeding  primitive activities to the real-time 
subsystem is unreliable.  The issue here is that the 
Executive must  rapidly diagnose and respond to detected 
contingencies. 

EVAR [Schoppers 951 resolved the problem by compiling 
large sequences  into universal plans - a clever encoding of 
statehesponse  rules  that enumerates all states and their 
appropriate responses. Unfortunately this approach only 
works in restricted domains where we can make a practical 
representation that implicitly enumerates all states. 

Another approach involves robustly implementing each 
activity as  a reactive action procedure (RAP) - an 
encoding of statehesponse  rules  for anticipated states 
[Firby 871. Here activities fail when the current state falls 
outside the anticipated  set, and failure forces the executive 
to abort  the  sequence  and  inform the planner. The issue 
now involves how many actions to feed the executive at  a 
time. 

For Instance, one system uses variable size planning 
wlndows t o  generate sequences where one activlty is to 
p l a n  1 0 1 -  thr n e y t  n lndou [ h l l  et a l  07).  and another 

system  runs the planner continuously and  feeds  individual , 

activities to the executive as  they  become executable 
[Ambrose-Ingerson&Steel 881. While these examples 
show that the planner’s continual operation is optional, all 
systems must continually run the executive to actively 
monitor and diagnose the real-time subsystems. This 
lnvolves using a production system to appropriately apply 
stateiresponse rules to affect the system state or real-time 
subsystem. 

2.2. PLANNEWSCHEDULER 

While the executive reasons  about current and past 
activities, the plannerhcheduler  (or just “planner”)  reasons 
about future command sequences. Given  the  heavy use of 
time and metric resources in  spacecraft  planning domains, 
we use a heuristic iterative-repair strategy [Rabideau 991 
towards building and maintaining command sequences. 
This approach takes a complete plan at some level of 
abstraction and manipulates its actions to repair problems 
detected by envisioning how the plan  would execute on the 
spacecraft. One type of problem involves multiple 
simultaneous actions with conflicting  resource needs. For 
example, simultaneously activating too  many sensors 
might cause a bus fault by drawing too much  power. 
Repairing this problem would involve either deleting or 
moving sensor activation activities in the plan. 

At any given moment the mission  manager can suggest 
tasks for the plannerhcheduler to add to the constellation’s 
future behavior. Since these tasks are often abstract and 
might conflict with other established tasks the scheduler 
continuously debugs its tasks and sends actions to the 
executive (fig.  2).  The  planner essentially maintains a  set 
of tasks that are abstract in the far  future  and  become 
progressively more detailed as  their  execution times 
approach. For example, a suggested task to take a picture 
of a target might involve slewing and  possibly calibrating 
the camera prior to acquiring the image. This task is 
detailed as its execution time approaches. By continuously 
detailing the earliest tasks, the planner assures that it 
always has actions to send to the executive. 

Abstract tasks from Mission Manager 
x 

Actions sent to Executive/Diagnostician 

FIG.:  2 Continually updating the  spacecraft acitivities 

As time. progresses, activities move from the future plan 
through current execution into the past. During this 
process an activity’s expected outcomes get replaced with 



, its sensed  outcomes,  and  the  constellation’s  actual  state 
will  drift  from  the  expected  state  and  cause  future 
expectations to drift as well.  The  planner  repairs  the tasks 
whenever  this  drift  causes  a  conflict. 

2.3.  MISSION  MANAGER 

This  module  facilitates  high-level  spacecraft  commanding 
by maintaining  beliefs  involving the high-level  mission 
profile.  This  profile  contains a high  level  behavioral 
description  for  the  spacecraft.  This  description  can take 
many  forms  from  a  simple  set of temporally  constrained 
goals  to an elaborate  production  system  that  asserts goals 
upon  detecting  user  specified  scientific  opportunities by 
analyzing  parts  of  the  constellation & environment  model. 

For  instance,  the  spacecraft would have  periodic  goals to 
transmit  data  to  Earth.  These  goals  would  be  temporally 
constrained  in  order to synchronize  with a ground  station. 
They  also  have  to be high  level  to  determine how to 
communicate  based  on the specific  state  of  the  spacecraft 
prior  to  preparing  for  a  downlink. As another  example, the 
mission  manager  might  apply  a  feature  detection  algorithm 
on  a  previously  captured  picture and generate  observation 
goals  based  on  the  results. 

While  a  spacecraft  can  operate  entirely  autonomously with 
a  mission  profile.  Humans  analyzing  the  science  results 
will  tend  to  suggest  changes to mission  goals  for  answering 
questions  arising  from  their  analysis. We can  even  vary 
the  constellation’s  level  of  autonomy  by  varying  the 
abstractness  of  the  mission  profile.  When  using  primitive 
action  sequences,  the  profile  can  short-circuit  the  planner 
to  allow  absolute  commanding.  Adding  abstract  tasks to 
the  profile  lets  the  spacecraft  adapt its behavior to its local 
environment,  and  adding data analysis  for  rule based 
autonomous  goal  generation  makes a spacecraft  detect and 
respond  to  scientific  opportunities. 

3. TEAMWORK 

While  the  master/slave  approach  benefits  from  conceptual 
simplicity,  it  relies  on  an  assumption that the  master  space- 
craft’s  real-time  subsystem  can  continuously  monitor the 
slaves’  hardware,  and  this  relies  on  high-bandwidth  highly- 
reliable  communications.  Since  unintended  results  occur 
fairly  rarely,  one  way to relax  the  bandwidth  requirements 
involves  putting  real-time  subsystems on the slaves and 
only  monitoring  unexpected  events.  Unfortunately, this 
disables  the  ability  to  monitor  for  unexpected  events 
between  spacecraft  and  leads  to  a  host  of  coordination 
problems  among  the  slaves  [Tambe 971. Also,  failures  in 
the  communications  system  can  result  in  losing  slaves. 

We can  apply  teamwork  models  [Tambe 97, Stone& 
Veloso 981 to reduce  the  communications  problem by 
giving  the  slaves  their  own  executives  (fig.  3).  This 
replaces  the  master/slaves  relationship  with  one  between  a 
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FIG.: 3 Architecture  for  Teamwork 

team  leader  and its followers.  Here  each  follower  can 
monitor its own  performance and selectively  transmit 
results to the  leader.  Partitioning  the  system’s  state  into 
local  spacecraft  states  and  shared  team-states  facilitates 
this  selective  transmission.  While  the  spacecraft  keep  their 
local  states  private,  they  communicate  to  keep  team-states 
consistent  across teams in  the  constellation. 

3.1. REPRESENTIN(; TEAM P1.ANS 

Instead of sending  separate  actions to each  follower for 
execution, the leader broadcasts  the  entire  reactive  team 
plan’ to all  followers.  This  lets  each  follower  actively 
monitor its own  progress  and  passively  track its 
teammates’  activities.  This  passive  monitoring  process 
maintains  robustness  while  reducing  communications. 

In addition  too  regular  activities  found  in  the  masterhlave 
approach,  reactive  team  plans  also  include team activities. 
These  define  coordination  points  where  the  team 
synchronizes  before and after  executing  the  team  activity. 
For instance,  a 3 spacecraft  interferometer has a combiner 
spacecraft to generate  pictures by processing  light  reflected 
from two collector  spacecraft. A reactive  team  plan to 
control  the  constellation  might  have 3 team  activities  (fig. 
4) to coordinate  the 3 spacecraft  while  making an 
observation,  and  each  activity  has  2  or 3 sub-activities 
defining  how  the  constellation  behaves  during  the  joint 
activities.  As  illustrated,  team  activities  have  brackets  and 
those  suffixed  with an asterisk  only  apply  to  subsets  of  the 
team.  In  this case the  subset  denotes  the  combiner 
spacecraft.  The  activities  in this plan  subsequently  make 
the constellation attain a rough formation,  dress up the 
formation for finer toleranccs to make a measurement. and 
transmit the results to I:arth 

While this interferometer‘s  impovenshed number of 
spacecraft  do not sufficiently  motivate the need  for 
teamwork,  other  interferometer  mission  proposals  describe 
over a  dozen, or even a  hundred,  collectors  to  support  the 
combiner. To support  teamwork  for  these  larger  missions, 

I Given  our  heavy  use of Tambe’s  formalism, we adopt  his 
terminology  and  call  a  sequence  a reactive  team  plan. 



3.2.  EXECUTING  TEAM  ACTIVITIES 

A  team of spacecraft contains a leader and  one or more 
followers that jointly intend to accomplish some task by 
executing a  team  activity.  Teams dynamically form  when 
team activity execution starts and dissolve upon comple- 
tion. When a team performs a task, it shares a team-state. 
Thls state contains facts like a list of teammates, their roles 
I n  pel-tOrmlng the pint task, and other information to 
coordinate team  actl\,Ity. 

Depending  on the action, execution can manipulate the 
real-time subsystem and alter the local and team-state 
information. Since team-states are replicated across all 
teammates,  a  spacecraft  must broadcast all team-state 
changes  to  maintain consistency. The standard protocol 
for changing a team-state is a  3-step process where one 
spacecraft  broadcasts  the  change,  all teammates broadcast 
acknowledgements  in turn, and  all teammates update their 
copies upon hearing everyone else. If  a teammate does not 
respond before  a time-out interval, the original spacecraft 
rebroadcasts the change. 

While only transmitting team-state changes reduce 
communications, the number of broadcasts still implies 
bandwidth  problems  as  the  spacecraft population increases. 
Stopping  spacecraft from broadcasting a  change  when 
teammates can infer it from  observation further reduces 
communications  [Huber&Durfee 95, Tambe 971. For 
instance, the  combiner  in  our interferometer example does 
not have to signal the end of a formation activity. The 
mere act of slewing  to downlink the results tells the 
collectors that the formation activity is over. 

3 . 3 .  (;F.NEKA‘TTNG ANT) REPAIRING TEAM PLANS 

Although reactwe team plans might look  like  an extension 
on standard  hierarchical plans by virtue of the bracket 

syntax, techniques for building and  managing  hierarchical 
plans, like those described earlier, also apply to generating 
reactive team plans. As such planning does not change 
much when moving from masterhlave plans to reactive 
team plans. Just like in masterhlave coordination, there is 
a  spectrum of ways to generate plans  and  feed  them  to the 
executives. At one extreme the lead spacecraft can 
generate a whole plan and then feed the resultant sequence 
to its executives, and at the  other  extreme it repairs the  plan 
incrementally and maintains a  copy  in the shared team- 
state. 

The real difference between the two approaches involves 
limiting the knowledge to plan  from.  Where  the master 
knew everything about the constellation, the team leader 
only knows a subset of everything. The issue now 
becomes a matter of what status information to put in the 
subset and  how fresh to keep it. While increasing the 
information and its freshness improves  the leader’s results, 
it also increases the communication  overhead  as the 
constellation’s status changes. 

A second issue involves whether the  information  belongs 
in the team-state, and whether it should  be transmitted 
privately to the leader. While putting information in the 
team-state increases the followers’ abilities to  keep track of 
each other, it also increases the communications  overhead. 
Where changing the team-state involves  a  broadcast 
followed by waiting for multiple acknowledgements, 
changing the leader’s local state involves  one transmission 
followed by waiting for the leader’s  acknowledgement. 

One planning approach has the leader  managing the team 
plan and follower roles in the team-state, but lets the 
followers privately transmit state  updates  to  the  leader. 
Here the leader changes the team  plan  and roles based  on 
projecting its expected results given the privately  received 
status information. 

Another approach still has the leader managing the team 
plan’s activities with heuristically assigned  roles  in the 
team-state, but followers keep status information  local  and 
submit change requests as they perform  their roles in the 
evolving team plan [FujitaLkLesser 961. While we  can 
assign and reassign roles at  random,  a  better  approach 
involves auctioning off the unassigned roles to the 
teammates. The teammates bid on these roles based on 
local information as well as  currently  assigned roles, and 
the leader can either change the plan or assign  roles based 
on these bids. 

4. PEER-TO-PEER COORDINATION 

The approach to alter communication  overhead by 
distributing execution monitoring across  the constellation 
can extend to also distributing the planning process. This 
addresses the possibility where the lead spacecraft is 
disabled. For interferometers this is not an issue because 



, losing the  combiner  spacecraft ends the mission anyway, 
but missions like a 50 satellite constellation are function- 
ally redundant  and  should not end when any one spacecraft 
is disabled. 

One  way  to  increase robustness involves giving the other 
spacecraft  backup  planners and mission managers (fig. 5). 
While  this lets the  next  spacecraft  in  a designated chain of 
command  replace  a disabled leader, these extra modules 
are underutilized. Instead of transmitting data to  a central 
spacecraft  for  planning, we can  use  the extra planners to 
move  parts of the  planning  process  closer  to the data. This 
makes the spacecraft  symmetric  and coordination becomes 
a collaborative effort among peers. 

Peers 

affectors 

FIG.: 5 Architecture for Peer-To-Peer Coordination 

This  architecture  works particularly well with constell- 
ations of satellites that loosely coordinate. For instance, a 
constellation of picture taking satellites might coordinate to 
partition  desired targets, but each satellite runs in isolation 
to  take its picture. Here the mission managers coordinate 
to  partition  the  goals,  and the planners and executives run 
in isolation. This  class of loose coordination problem is 
common in the mobile  robot community, and some 
systems  even  call this module  a cooperative planning (or 
social)  module [Muller 961. 

4.1. LEVELS OF AUTONOMY 

In teamwork or a chain  of command,  one  spacecraft plans 
how  to  perform  a task and  its followers accept and execute 
the results. Combining loose coordination with teamwork 
facilitates letting different  spacecraft act as leaders for 
different tasks. Here all spacecraft know about all tasks, 
and  each task has a  designated lead spacecraft. Research 
on autonomy levels [Martin&Barber 961 generalizes this 
idea. We can give  each  spacecraft  a copy of the plan with 
tasks  annotated  with one of 5 autonomy levels: 

0 Observer:  spacecraft  does not participate, 
Command-driven:  spacecraft serves as a follower, 
Consensus: spacecraft collaboratively plans with others, 

0 Local: spacecraft  plans  to  perform task alone, and 
0 Master: spacecraft  plans  and serves as a leader. 

As the 5 definitions imply, autonomy levels specify 
whether or not a spacecraft can change a task. For Instance, 
a team’s lerrder has tasks annotated wlth “master”, and Its 
followers’ tasks have “command-driven”  annotations. 
Given these annotations, a spacecraft can simultaneously 
serve as  a leader and a follower  in  two  separate teams. A 
spacecraft  can  even  plan  and  perform tasks in isolation 
while participating in  teams. 

While autonomy levels specify  which  constellation 
members  plan out mission  manager  requested tasks. These 
levels are not static - a  spacecraft can communicate  with 
the constellation to  change  a  task’s  autonomy  level 
annotations. For instance, a  mission  manager might 
always assign tasks to its spacecraft at the “local” 
autonomy level. If a team is needed to perform the task, 
the spacecraft will have to change the annotation to 
“master.” As Martin  points  out  [Martin&Barber 961, this 
change involves communicating to find  spacecraft willing 
to accept “command-driven’’ annotations. 

Using autonomy levels, we  can treat the plan  and state 
information as a  shared database where  each  spacecraft has 
varying capabilities to modify tasks  based on their 
autonomy-level annotations.  Softening the distribution 
requirement from full to partial plan sharing makes a 
constellation operate as a team at one point and as multiple 
Independent spacecratt as another.  I‘he change ~ n \ ~ o l v c s  
letting spacecraft keep locally planncci and executed tasks 
private. 

4.3. COLLABORATIVE PLANNING 

Unlike the other annotations where a  single  spacecraft 
plans a task, the “consensus” annotation  implies that 
multiple spacecraft collaboratively plan to  perform  a task. 
Collaborative planning involves distributing  the  plan 
across the constellation and letting each  spacecraft  detect 
and repair problems. The question now becomes  a  matter 
of how to keep the plan consistent across the constellation 
while all spacecraft are updating it. The main objective is 
to minimize communications overhead while planning. 

One  approach would fragment the plan  and  distribute the 
fragments [Corkill 791. Since the fragments  are disjoint, 
their union would be consistent. Each  spacecraft would 
expand its own fragment and communicate  to  detect  and 
resolve interactions. To detect interactions, each  spacecraft 
broadcasts its fragment’s effects upon determining them. 
When a spacecraft hears of an effect that either  helps or 
hinders its own  fragment, it initiates a  dialog  with  the 
broadcasting spacecraft to add signaling  actions to their 
plans to coordinate the interactlon. Thus the requlred 
bandwidth depends the amount o f ‘  Interactloll. 

An alternative approach would give every spacecraft a 
copy of the plan and have them maintain  consistency by 
broadcasting changes as they make  them.  The  main 



problem with this approach involves communication 
overhead - the spacecraft would spend most of their time 
responding to each other’s updates. 

Ihese two approaches define a whole spectrum of 
collaborative planners depending on the amount of shared 
plan  and state information. While the first case shared all 
state information in the form of advertised effects the 
second  shared  all  plan information. 

. >  

5. CONCLUSIONS 

This  paper described several autonomy architectures for an 
autonomous  constellation of spacecraft.  Such a constell- 
ation would continually plan to control its spacecraft using 
collective mission goals instead of goals or command 
sequences for each  spacecraft. The first architecture made 
use of research relating to a single autonomous spacecraft 
by treated the constellation as a single master spacecraft 
with  virtually  connected slaves. 

The utilized  research  describes implementations in terms 
of 4 interacting modules,  and  the master/slave architecture 
placed all modules  on the master. While the teamwork and 
peer-to-peer architectures  keep the 4 modules, they 
progressively  give the slaves  more authority by replicating 
more of the modules across the constellation. 

While this paper described each architecture in isolation, 
these archltechu-es can coevlst within a constellatlon. Such 
a constellatlon would have 3 classes of spacecraft: leaders, 
followers, and  slaves. Where leaders have the ability to 
plan and collaborate, followers can only execute plans and 
watch out for each  other. Both leaders  and followers can 
have  virtually  attached  slave spacecraft. 
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